Laman

Selasa, 06 November 2018

#SIP AI & Expert System

A. AI ( Artifical Intelligence)


1. Definisi AI 
Kecerdasan Buatan atau kecerdasan yang ditambahkan kepada suatu sistem yang bisa diatur dalam konteks ilmiah atau Intelegensi Artifisial (bahasa Inggris: Artificial Intelligence atau hanya disingkat AI) didefinisikan sebagai kecerdasan entitas ilmiah. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia. Beberapa macam bidang yang menggunakan kecerdasan buatan antara lain sistem pakar, permainan komputer (games), logika fuzzy, jaringan saraf tiruan dan robotika. Banyak hal yang kelihatannya sulit untuk kecerdasan manusia, tetapi untuk Informatika relatif tidak bermasalah. Seperti contoh: mentransformasikan persamaan, menyelesaikan persamaan integral, membuat permainan catur atau Backgammon. Di sisi lain, hal yang bagi manusia kelihatannya menuntut sedikit kecerdasan, sampai sekarang masih sulit untuk direalisasikan dalam Informatika. Seperti contoh: Pengenalan Objek/Muka, bermain sepak bola.

2. Sejarah AI 
Pada awal abad 17, Rane Descartes mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin yang rumit. Blaise Pascal menciptakan mesin penghitung digital mekanis pertama pada 1642. Pada 19, Charles Babbage dan Ada Lovelace bekerja pada mesin penghitung mekanis yang dapat diprogram. Bertrand Russell dan Alfred North Whitehead menerbitkan Principia Mathematica yang merombak logika formal. Warren McCulloch dan Walter Pitts menerbitkan "Kalkulus Logis Gagasan yang tetap ada dalam Aktivitas" pada 1943 yang meletakkan fondasi untuk jaringan saraf. Tahun 1950-an adalah periode usaha aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk menjalankan mesin Ferranti Mark I di University of Manchester (UK); sebuah program permainan naskah yang ditulis oleh Christopher Strachey dan program permainan catur yang ditulis oleh Dietrich Prinz. John McCarthy membuat istilah "Kecerdasan Buatan" pada konferensi pertama yang disediakan untuk pokok persoalan ini, pada 1956. Dia juga menemukan bahasa pemograman Lisp. Alam turing memperkenalkan "Turing test" sebagai sebuah cara untuk mengoperasionalkan test perilaku cerdas. Joseph Weizenbaum membangun ELIZA, sebuah chatterbot yang menerapkan psikoterapi Rogerian. Selama tahun 1960-an dan 1970-an Joel Moses mendemonstrasikan kekuatan pertimbangan simbolis untuk mengintegrasikan masalah di dalam program Macsyma, program berbasis pengetahuan yang sukses pertama kali dalam bidang matematika. Marvin Minsky dan Seymour Papert menerbitkan Perceptrons, yang mendemostrasikan batas jaringan saraf sederhana dan Alain Colmerauer mengembangkan bahasa komputer Prolog. Ted Shortliffe mendemonstrasikan kekuatan sistem berbasis aturan untuk representasi pengetahuan dan inferensi dalam diagnosa dan terapi medis yang kadangkala disebut sebagai sistem pakar pertama. Tahun 1990-an ditandai perolehan besar dalam berbagai bidang AI dan demonstrasi berbagai macam aplikasi. Lebih khusus Deep Blue, sebuah komputer permainan catur, mengalahkan Garry Kasparovdalam sebuah pertandingan 6 game yang terkenal pada tahun 1997. DARPA menyatakan bahwa biaya yang disimpan melalui penerapan metode AI untuk unit penjadwalan dalam Perang Teluk pertama telah mengganti seluruh investasi dalam penelitian AI sejak tahun 1950 pada pemerintah AS. Tantangan Hebat DARPA, yang dimulai pada 2004 dan berlanjut hingga hari ini, adalah sebuah pacuan untuk hadiah $2 juta dimana kendaraan dikemudikan sendiri tanpa komunikasi dengan manusia, menggunakan GPS, komputer dan susunan sensor yang canggih, melintasi beberapa ratus mil daerah gurun yang menantang.

3. Hubungan AI dengan Kognisi Manusia
Teknologi Artificial Intelligence memiliki hubungan yang erat dengan dunia teknologi komunikasi dan informasi. Sama seperti proses komunikasi, Artificial Intelligence menaruh perhatian yang besar terhadap konsep kognisi. Salah satu fungsi kognisi yang kita kenal adalah bahasa. Dengan adanya sistem bahasa, komunikasi antara sender dengan receiver dapat berjalan dengan lancar, dan sistem bahasa, lebih spesifiknya sistem computer linguistic, pun telah menyumbang banyak kontribusi bagi perkembangan dunia Artificial Intelligence. Dari relasi ini, bisa terlihat bahwa bahasa sebagai salah satu konsep relevan dalam dunia komunikasi memiliki hubungan yang demikian erat dengan perkembangan teknologi artificial intelligence dari zaman dahulu hingga sekarang. Selain itu, penalaran dan pengambilan keputusan adalah aspek lainnya dari kognisi yang juga memiliki relasi dengan konsep komunikasi dan teknologi artficial intelligence sendiri.

B. Expert System 


1. Definisi Expert System
Sistem Pakar (Expert System) merupakan suatu sistem yang menggunakan pengetahuan manusia dalam komputer untuk memecahkan masalah yang biasanya dikerjakan oleh seorang pakar, misalnya : Dokter, Lawyer, Analist Keuangan, Tax Advisor. Sistem pakar dapat mendorong perhatian besar diantara ahli komputer dan spesialist informasi untuk mengembangkan sistem membantu manajer dan non manajer memecahkan masalah. Sistem Pakar terdiri dari 4 bagian yaitu:
1.      User Interface
2.      Knowledge Base
3.      Inference Engine
4.      Development Engine

2. Sejarah Expert System 
Expert System pertama kali dikembangkan oleh komunitas AI (Artificial Intellegence) pada pertengahan tahun 1956. Sistem Pakar yang muncul pertama kali adalah General-purpose Problem Solver (GPS) yang dikembangkan oleh Allen Newell dan Habert A. Simon.
Pada pertengahan tahun 1960-an, terjadi pergantian dari program serba bisa (general-purpose) ke program yang spesialis (special-purpose) dengan dikembangkannya DENDRAL oleh E.Feigenbauh dari Universitas Stanford dan kemudian diikuti oleh MYCIN.
Awal tahun 1980-an, teknologi Sistem Pakar yang mula-mula dibatasi oleh suasana akademis mulai muncul sebagai aplikasi komersial, khususnya XCON, XSEL (dikembangkan dari R-1 pada Digital Equipment Corp.) dan CATS-1 (dikembangkan oleh General Electric). Sistem Pakar dari tahun ketahun selalu mengalami perkembangan sampai saat ini.

Expert System saat ini
Saat ini expert system mengalami perkembangan pesat diberbagai bidang seperti bidang Teknologi,ekonomi,Sosial,Kedokteran,dll.Expert System terdiri dari 4 bagian:
1.         User Interface
User interface digunakan manajer untuk memasukkan instruksi dan informasi dari sistem. Metode input yang digunakan oleh manajer yaitu:
· Menu
· Command
· Natural Language
· Output Expert System memakai 2 bentuk penjelasan (explanation) :
· Explanation of Question
· Explanation of Problem Solution

2.         Knowledge Base
Knowledge base terdiri dari fakta yang menggambarkan problem domain dan juga teknik penyajian yang menggunakan fakta sesuai logika.
Aturan(rules) merupakan rincian dalam situasi yang tidak berubah: Kondisi benar dan tidak benar, tindakan yang diambil bila kondisi benar.

3.         Interface Engine
Inference Engine merupakan bagian dari Expert System yang membentuk Reasoning dengan menggunakan isi dari knowledge base dalam urutan tertentu.

4. Contoh Expert System

1. ELIZA
ELIZA adalah salah satu Sistem Pakar yang paling awal dikembangkan. Ini adalah program komputer terapis yang dibuat oleh Joseph Weizenbaum di MIT. Pengguna berkomunikasi dengannya sebagaimana sedang berkonsultasi dengan seorang terapis. Berikut ini adalah contoh percakapan antara Eliza dengan seorang klien:
Eliza: Hello. I am ELIZA. How can I help you?
Klien: My name is Balza.
Eliza: I have told you before, I do not care about names.
Klien: I don’t have any money. That’s my problem.
Eliza: Why do you say your problem?
Klien: Because you asked me.
Eliza: Do any other reasons not come to mind?
Klien: No.
Eliza: You are being a bit negative.
Klien: Why?
Eliza: Please go on.
Klien: OK. I am bankrupt.
Eliza: How long have you been bankrupt?
Klien: A year.
Eliza: Please go on.
Klien: So, what should I do?
Eliza: Does that question interest you?
Klien: Yes, how can I make big money?
Eliza: You are sure?
Klien: Of course I’m sure.

2. Parry
Parry adalah Sistem Pakar yang juga paling awal dikembangkan di Stanford University oleh seorang psikiater, Kenneth Colby, yang mensimulasikan seorang paranoid. Berikut ini contoh respon Parry terhadap pertanyaan seorang psikiater yang menginterviwenya.
Psikiater: Why are you in the hospital?
Parry: I shouldn't be here.
Psikiater: Who brought you here?
Parry: The police.
Psikiater: What trouble did you have with the police?
Parry: Cops don't do their job.
Psikiater: What do they do instead?
Parry: Cops arrest the wrong people.
Psikiater: They arrest the right ones sometimes
Parry: The law should get those Italian crooks.
Psikiater: Are you Italian?
Parry: My background is British but I was born in this country.
Psikiater: Do you know any Italian crooks?
Parry: I try to avoid the underworld....

3. NETtalk

Connectionism adalah gerakan dalam ilmu kognitif yang berharap untuk menjelaskan kemampuan intelektual manusia menggunakan jaringan syaraf tiruan (juga dikenal sebagai “jaringan syaraf”). Jaringan syaraf disederhanakan model otak terdiri dari sejumlah besar unit (young analog neuron) bersama-sama dengan bobot yang mengukur kekuatan hubungan antara unit. Model ini berat efek dari sinaps yang menghubungkan satu neuron yang lain. Percobaan pada model semacam ini telah menunjukkan kemampuan untuk mempelajari keterampilan seperti pengenalan wajah, membaca, dan deteksi struktur gramatikal sederhana. Connectionists telah membuat kemajuan yang signifikan dalam menunjukkan kekuatan jaringan saraf untuk menguasai tugas-tugas kognitif. Berikut adalah tiga percobaan terkenal yang telah mendorong connectionists untuk percaya bahwa JST model yang baik dari kecerdasan manusia. Salah satu yang paling menarik dari upaya tersebut adalah kerja 1987 Sejnowski dan Rosenberg di jaring yang dapat membaca teks bahasa Inggris disebut NETtalk. Pelatihan ditetapkan untuk NETtalk adalah basis data yang besar terdiri dari teks bahasa Inggris ditambah dengan output yang sesuai fonetik-nya, yang ditulis dalam kode yang cocok untuk digunakan dengan synthesizer pidato. Tape kinerja NETtalk di berbagai tahap pelatihan mendengarkan sangat menarik. Pada awalnya output random noise. Kemudian, bersih suara seperti itu mengoceh, dan kemudian masih seolah-olah itu adalah berbahasa Inggris double-talk (pidato yang dibentuk dari suara yang menyerupai kata dalam bahasa Inggris). Pada akhir pelatihan, NETtalk melakukan pekerjaan yang cukup baik mengucapkan teks diberikan. Selain itu, kemampuan ini generalizes cukup baik untuk teks yang tidak disajikan pada training set.


Daftar Pustaka :

1 komentar: